(From a speech delivered at Discovery Institute's God & Culture Conference, August 10,1996)
How do we see? In the 19th century the anatomy of the eye was known in great detail, and its sophisticated features astounded everyone who was familiar with them. Scientists of the time correctly observed that if a person were so unfortunate as to be missing one of the eye's many integrated features, such as the lens, or iris, or ocular muscles, the inevitable result would be a severe loss of vision or outright blindness. So it was concluded that the eye could only function if it were nearly intact.
Charles Darwin knew about the eye too. In the Origin of Species, Darwin dealt with many objections to his theory of evolution by natural selection. He discussed the problem of the eye in a section of the book appropriately entitled "Organs of extreme perfection and complication." Somehow, for evolution to be believable, Darwin had to convince the public that complex organs could be formed gradually, in a step-by-step process.
He succeeded brilliantly. Cleverly, Darwin didn't try to discover a real pathway that evolution might have used to make the eye. Instead, he pointed to modern animals with different kinds of eyes, ranging from the simple to the complex, and suggested that the evolution of the human eye might have involved similar organs as intermediates.
Using reasoning like this, Darwin convinced many of his readers that an evolutionary pathway leads from the simplest light sensitive spot to the sophisticated camera-eye of man. But the question remains, how did vision begin? Darwin persuaded much of the world that a modern eye evolved gradually from a simpler structure, but he did not even try to explain where his starting point for the simple light sensitive spot came from. On the contrary, Darwin dismissed the question of the eye's ultimate origin:
How a nerve comes to be sensitive to light hardly concerns us more than how life itself originated. He had an excellent reason for declining the question: it was completely beyond nineteenth century science. How the eye works; that is, what happens when a photon of light first hits the retina simply could not be answered at that time. As a matter of fact, no question about the underlying mechanisms of life could be answered. How did animal muscles cause movement? How did photosynthesis work? How was energy extracted from food? How did the body fight infection? No one knew.
GTP-transducin-activated rhodopsin now binds to a protein called phosphodiesterase, located in the inner membrane of the cell. When attached to activated rhodopsin and its entourage, the phosphodiesterase acquires the ability to chemically cut a molecule called cGMP (a chemical relative of both GDP and GTP). Initially there are a lot of cGMP molecules in the cell, but the phosphodiesterase lowers its concentration, like a pulled plug lowers the water level in a bathtub.
Another membrane protein that binds cGMP is called an ion channel. It acts as a gateway that regulates the number of sodium ions in the cell. Normally the ion channel allows sodium ions to flow into the cell, while a separate protein actively pumps them out again. The dual action of the ion channel and pump keeps the level of sodium ions in the cell within a narrow range. When the amount of cGMP is reduced because of cleavage by the phosphodiesterase, the ion channel closes, causing the cellular concentration of positively charged sodium ions to be reduced. This causes an imbalance of charge across the cell membrane which, finally, causes a current to be transmitted down the optic nerve to the brain. The result, when interpreted by the brain, is vision.
Irreducible Complexity
How can we decide if Darwin's theory can account for the complexity of molecular life? It turns out that Darwin himself set the standard. He acknowledged that:
If it could be demonstrated that any complex organ existed which could not possibly have been formed by numerous, successive, slight modifications, my theory would absolutely break down. But what type of biological system could not be formed by "numerous, successive, slight modifications"?
The Cilium
But how does a cilium work? Experiments have shown that ciliary motion results from the chemically-powered "walking" of the dynein arms on one microtubule up a second microtubule so that the two microtubules slide past each other. The protein cross-links between microtubules in a cilium prevent neighboring microtubules from sliding past each other by more than a short distance. These cross-links, therefore, convert the dynein-induced sliding motion to a bending motion of the entire axoneme.
Now, let us consider what this implies. What components are needed for a cilium to work? Ciliary motion certainly requires microtubules; otherwise, there would be no strands to slide. Additionally we require a motor, or else the microtubules of the cilium would lie stiff and motionless. Furthermore, we require linkers to tug on neighboring strands, converting the sliding motion into a bending motion, and preventing the structure from falling apart. All of these parts are required to perform one function: ciliary motion. Just as a mousetrap does not work unless all of its constituent parts are present, ciliary motion simply does not exist in the absence of microtubules, connectors, and motors. Therefore, we can conclude that the cilium is irreducibly complex; an enormous monkey wrench thrown into its presumed gradual, Darwinian evolution.
Blood Clotting
Now let's talk about a different biochemical system of blood clotting.
When an animal is cut a protein called Hageman factor sticks to the surface of cells near the wound. Bound Hageman factor is then cleaved by a protein called HMK to yield activated Hageman factor. Immediately the activated Hageman factor converts another protein, called prekallikrein, to its active form, kallikrein. Kallikrein helps HMK speed up the conversion of more Hageman factor to its active form. Activated Hageman factor and HMK then together transform another protein, called PTA, to its active form. Activated PTA in turn, together with the activated form of another protein (discussed below) called convertin, switch a protein called Christmas factor to its active form. Activated Christmas factor, together with antihemophilic factor (which is itself activated by thrombin in a manner similar to that of proaccelerin) changes Stuart factor to its active form. Stuart factor,working with accelerin, converts prothrombin to thrombin. Finally thrombin cuts fibrinogen to give fibrin, which aggregates with other fibrin molecules to form the meshwork clot you saw in the last picture.
Blood clotting requires extreme precision. When a pressurized blood circulation system is punctured, a clot must form quickly or the animal will bleed to death. On the other hand, if blood congeals at the wrong time or place, then the clot may block circulation as it does in heart attacks and strokes. Furthermore, a clot has to stop bleeding all along the length of the cut, sealing it completely. Yet blood clotting must be confined to the cut or the entire blood system of the animal might solidify, killing it. Consequently, clotting requires this enormously complex system so that the clot forms only when and only where it is required.
The Professional Literature
Other examples of irreducible complexity abound in the cell, including aspects of protein transport, the bacterial flagellum, electron transport, telomeres, photosynthesis, transcription regulation, and much more. Examples of irreducible complexity can be found on virtually every page of a biochemistry textbook. But if these things cannot be explained by Darwinian evolution, how has the scientific community regarded these phenomena of the past forty years? A good place to look for an answer to that question is in the Journal of Molecular Evolution. JME is a journal that was begun specifically to deal with the topic of how evolution occurs on the molecular level. It has high scientific standards, and is edited by prominent figures in the field. In a recent issue of JME there were published eleven articles; of these, all eleven were concerned simply with the comparison of protein or DNA sequences. A sequence comparison is an amino acid-by-amino acid comparison of two different proteins, or a nucleotide-by-nucleotide comparison of two different pieces of DNA, noting the positions at which they are identical or similar, and the places where they are not. Although useful for determining possible lines of descent, which is an interesting question in its own right, comparing sequences cannot show how a complex biochemical system achieved its function; the question that most concerns us here. By way of analogy, the instruction manuals for two different models of computer putout by the same company might have many identical words, sentences, and even paragraphs, suggesting a common ancestry (perhaps the same author wrote both manuals), but comparing the sequences of letters in the instruction manuals will never tell us if a computer can be produced step by step starting from a typewriter."Publish or perish" is a proverb that academicians take seriously. If you do not publish your work for the rest of the community to evaluate, then you have no business in academia and, if you don't already have tenure, you will be banished. But the saying can be applied to theories as well. If a theory claims to be able to explain some phenomenon but does not generate even an attempt at an explanation, then it should be banished. Despite comparing sequences, molecular evolution has never addressed the question of how complex structures came to be. In effect, the theory of Darwinian molecular evolution has not published, and so it should perish.
Detection of Design
There is an elephant in the roomful of scientists who are trying to explain the development of life. The elephant is labeled "intelligent design." To a person who does not feel obliged to restrict his search to unintelligent causes, the straightforward conclusion is that many biochemical systems were designed. They were designed not by the laws of nature, not by chance and necessity. Rather, they were planned. The designer knew what the systems would look like when they were completed; the designer took steps to bring the systems about. Life on earth at its most fundamental level, in its most critical components, is the product of intelligent activity.The conclusion of intelligent design flows naturally from the data itself, not from sacred books or sectarian beliefs. Inferring that biochemical systems were designed by an intelligent agent is a humdrum process that requires no new principles of logic or science. It comes simply from the hard work that biochemistry has done over the past forty years, combined with consideration of the way in which we reach conclusions of design every day.
A Complicated World
A word of caution; intelligent design theory has to be seen in context: it does not try to explain everything. We live in a complex world where lots of different things can happen. When deciding how various rocks came to be shaped the way they are a geologist might consider a whole range of factors: rain, wind, the movement of glaciers, the activity of moss and lichens, volcanic action, nuclear explosions, asteroid impact, or the hand of a sculptor.
Although ,western scientist give credit to Copernicus and Galileo; about earth moves around sun ,but it was already discovered in Indian Scriptures and documented. Click here(SCIENTIFIC VED
(Michael J. Behe is Associate Professor of Chemistry at Lehigh University in Pennsylvania and a Fellow of the Discovery Institute’s Center for Renewal of Science & Culture).
No comments:
Post a Comment