Showing posts with label MAHARSHI PINGAL. Show all posts
Showing posts with label MAHARSHI PINGAL. Show all posts

Sunday, March 29, 2015

Pingala, Inventor of Binary Numbers in 2nd Century BCE


Pingala MathematicianPingala (Devanagari: पिङ्गल) is the author of Chandaḥśāstra (Chandaḥsūtra), the earliest known Sanskrit treatise on prosody.
Very less historical knowledge is available about Pingala, though his works are retained till date.
He is identified either as the younger brother of Pāṇini (4th century BCE), or of Patañjali, the author of the Mahabhashya (2nd century BCE).
His work, Chandaḥśāstra means science of meters, is a treatise on music and can be dated back to 2nd century BCE.
Main commentaries on ‘Chandaḥśāstra‘ are ‘Vrittaratnakara‘ by Kedara in 8th century AD, ‘Tatparyatika‘ by Trivikrama in 12th century AD and ‘Mritasanjivani‘ by Halayudha in 13th century AD. The complete significance of Pingala’s work can be understood by the explanations found in these three commentaries.
Pingala (in Chandaḥśāstra 8.23) has assigned the following combinations of zero and one to represent various numbers, much in the same way as the present day computer programming procedures.
0 0 0 0 numerical value = 1
1 0 0 0 numerical value = 2
0 1 0 0 numerical value = 3
1 1 0 0 numerical value = 4
0 0 1 0 numerical value = 5
1 0 1 0 numerical value = 6
0 1 1 0 numerical value = 7
1 1 1 0 numerical value = 8
0 0 0 1 numerical value = 9
1 0 0 1 numerical value = 10
0 1 0 1 numerical value = 11
1 1 0 1 numerical value = 12
0 0 1 1 numerical value = 13
1 0 1 1 numerical value = 14
0 1 1 1 numerical value = 15
1 1 1 1 numerical value = 16
Other numbers have also been assigned zero and one combinations likewise.
Pingala’s system of binary numbers starts with number one (and not zero). The numerical value is obtained by adding one to the sum of place values. In this system, the place value increases to the right, as against the modern notation in which it increases towards the left.
The procedure of Pingala system is as follows:
  • Divide the number by 2. If divisible write 1, otherwise write 0.
  • If first division yields 1 as remainder, add 1 and divide again by 2. If fully divisible, write 1, otherwise write 0 to the right of first 1.
  • If first division yields 0 as remainder that is, it is fully divisible, add 1 to the remaining number and divide by 2. If divisible, write 1, otherwise write 0 to the right of first 0.
  • This procedure is continued until 0 as final remainder is obtained.
Example to understand Pingala System of Binary Numbers :
Find Binary equivalent of 122 in Pingala System :
        Divide 122 by 2. Divisible, so write 1 and remainder is 61.
1
          Divide 61 by 2. Not Divisible and remainder is 30. So write 0 right to 1.
    10
            Add 1 to 61 and divide by 2 = 31.
            Divide 31 by 2. Not Divisible and remainder is 16. So write 0 to the right.
      100
              Divide 16 by 2. Divisible and remainder is 8. So write 1 to right.
        1001
                Divide 8 by 2. Divisible and remainder is 4. So write 1 to right.
          10011
                  Divide 4 by 2. Divisible and remainder is 2. So write 1 to right.
            100111
                    Divide 2 by 2. Divisible. So place 1 to right.
              1001111
              Now we have 122 equivalent to 1001111.
              Verify this by place value system : 1×1 + 0x2 + 0x4 + 1×8 + 1×16 + 1×32 + 1×64 = 64+32+16+8+1 = 121
              By adding 1(which we added while dividing 61) to 121 = 122, which is our desired number.
              In Pingala system, 122 can be written as 1001111.
              Though this system is not exact equivalent of today’s binary system used, it is very much similar with its place value system having 20, 20, 21, 22, 22, 23, 24, 25, 26 etc used to multiple binary numbers sequence and obtain equivalent decimal number.
              Reference : Chandaḥśāstra (8.24-25) describes above method of obtaining binary equivalent of any decimal number in detail.
              These were used 1600 years before westeners invented binary system.
              We now use zero and one (0 and 1) in representing binary numbers, but it is not known if the concept of zero was known to Pingala— as a number without value and as a positional location.
              Pingala’s work also contains the Fibonacci number, called mātrāmeru, and now known as the Gopala–Hemachandra number. Pingala also knew the special case of the binomial theorem for the index 2, i.e. for (a + b) 2, as did his Greek contemporary Euclid.
              Halayudha (10th century AD) who wrote a commentary on Pingala’s work understood and used zero in the modern sense but by then it was commonplace in India and had also begun to make its way to West Asia as well to countries like Indonesia, Cambodia and others in East and Southeast Asia. It took several centuries more before being accepted in Europe. It was Leonardo of Pisa, better known as Fibonacci who seems to have introduced it in Europe in the 13th century. (He learnt it from the Arabs but noted that it came from India. His successors were not so careful, and for centuries they were known as Arabic numerals.)
              Halayudha was himself a mathematician no mean order. His discussion of combinatorics of poetic meters led him to a general version of the binomial theorem centuries before Newton. (This was the integer version only and not the full general version with arbitrary index given by Newton.) This too traveled east and west with the Persian mathematician and poet using the results in the 13th century.
              Halāyudha’s commentary includes a presentation of the Pascal’s triangle for binomial coefficients (called meruprastāra).
              Chandaḥśāstra presents the first known description of a binary numeral system in connection with the systematic enumeration of meters with fixed patterns of short and long syllables (Short = 0, Long = 1).
              Use of zero is sometimes mistakenly ascribed to Pingala due to his discussion of binary numbers, usually represented using 0 and 1 in modern discussion, while Pingala used short and long syllables.
              As Pingala’s system ranks binary patterns starting at one (four short syllables—binary “0000”—is the first pattern), the nth pattern corresponds to the binary representation of n-1, written backwards. Positional use of zero dates from later centuries and would have been known to Halāyudha but not to Pingala.
              CITATION-BOOKSFACT.COM

              Monday, July 14, 2014

              BINIARY SYSTEM- STARTED BY MAHARSHI PINGAL

              महर्षि पिंगल का जन्म लगभग 400 ईसा पूर्व का माना जाता है । कई इतिहासकार इन्हें महर्षि पाणिनि का 

              छोटा भाई मानते है | महर्षि पिंगल उस समय के महान लेखकों में एक थे । इन्होने छन्दःशास्त्र (छन्दःसुत्र) 

              की रचना की ।
              छन्दःशास्त्र आठ अलग अलग अध्यायों में विभक्त है |

              आठवे अध्याय में पिंगल ने छंदों को संक्षेप करने तथा उनके वर्गीकरण के बारे में लिखा ।

              तथा द्विआधारीय रचनाओं को गणितीय रूप में लिखने के बारे में बताया ।
              तथा इनके छंदों की लम्बाई नापने के लिए वर्णों की लम्बाई या उसे उच्चारित (बोलने) में लगने वाले समय 

              के आधार पर उसे दो भागों में बांटा :- गुरु (बड़े के लिए) तथा लधु (छोटे के लिए) |
              इसके लिए सर्व प्रथम एक पद (वाक्य) को वर्णों में विभाजित करना होता है विभाजित करने हेतु निम्न

              नियम दिए गये है :
              1. एक वर्ण में स्वर (vowel) अवश्य होना चाहिए तथा इसमें अवश्य केवल एक ही स्वर होना चाहिए|

              2. एक वर्ण सदैव व्यंजन से प्रारंभ होना चाहिए परन्तु वर्ण स्वर से प्रारंभ हो सकता है केवल यदि वर्ण 

              लाइन के प्रारंभ में हो |
              3.किसी वर्ण को हो सके उतना अधिक दीर्घ बनाना चाहिए ।
              4.जो वर्ण छोटे स्वर से अंत होता है (अ इ उ आदि ) उसे लघु तथा बाकि सारे गुरु कहे जाते है अर्थात जिस 

              किसी वर्ण के पीछे कोई मात्रा न हो वो लघु (Light) तथा मात्रा वाले गुरु(Heavy) कहे जाते है जैसे : मे, री 

              आदि
              उदहारण के लिए :
              त्वमेव माता च पिता त्वमेव

              इस श्लोक को उपरोक्त वर्णन के आधार पर विभाजित किया गया है
              त्व मे व मा ता च पि ता त्व मे व
              L H L H H L L H L H L
              त्वमेव बन्धुश्च सखा त्वमेव
              त्व मे व बन् धुश् च स खा त्व मे व

              L H L H H L L H L H L
              बन्धु को विभक्त करते समय आधे न (न्) को ब के साथ रखा गया है (बन्) क्योंकि तीसरा नियम कहता है

              “किसी वर्ण को हो सके उतना अधिक दीर्घ बनाना चाहिए” तथा बन् को साथ रखने पर दूसरा नियम भी 

              सत्य होता है चूँकि बन् लाइन के आरंभ में नही है इसलिए व्यंजन से प्रारंभ होना अनिवार्य है |
              और प्रथम नियम भी बन् में सत्य हो रहा है क्योकि ब में अ(स्वर) है |

              धुश् में भी प्रथम तथा तृतीय नियम सत्य होते है |

              आधे वर्ण में अंत होने वाले वर्ण जैसे : बन् धुश् गुरु की श्रेणी में आएंगे |
              लघु और गुरु को क्रमश: “|” और “S” (ये अंग्रेजी वर्णमाला का S नही है) से भी प्रदर्शित किया जाता है |
              इस प्रकार उपरोक्त चार नियमो द्वारा किसी भी श्लोक आदि को द्विआधारीय रचना में लिखा जा सकता है |

              ये तो हुई बात लघु और गुरु की |
              अब बात आती है इन्हें उचित स्थान देने की ।
              यदि हमारे पास 4 वर्ण है |तो इसके द्वारा हम 16 प्रकार के संयोजन (combinations) बना सकते है

              जिसमे प्रत्येक का स्थान महत्व रखता है |
              आगे पिंगल ने उसी के सन्दर्भ में एक मैट्रिक्स दी जिसका नाम था : प्रस्तार |

              प्रस्तार मैट्रिक्स को बनाने के लिए पिंगल ने मात्र एक ही सूत्र दिया :
              एकोत्तरक्रमश: पूर्वप्र्क्ता लासंख्या – छन्दःशास्त्र 8.23
              इस एक ही सूत्र से मैट्रिक्स की रचना को जानना अत्यंत कठिन था | कदाचित पिंगल के अतिरित 8 वी

              सदी तक इसके सन्दर्भ को कोई समझ नही पाया |
              परन्तु 8 वी सदी में केदारभट्ट ने पिंगल के छन्दःशास्त्र पर कार्य किया और इस पहेली को सुलाझा लिया

              इनके ग्रन्थ का नाम वृतरत्नाकर है इसके पश्चात त्रिविक्रम द्वारा १२वीं शती में रचित तात्पर्यटीका तथा 

              हलायुध द्वारा १३वीं शती में रचित मृतसंजीवनी में उपरोक्त सूत्र को और भी बारीकी से प्रस्तुत किया गया। ये 

              सभी छन्द:शास्त्र के ही भाष्य है |
              वृतरत्नाकर में केदार द्वारा वर्णित थ्योरी का अध्यन कर IIT कानपूर के प्रध्यापक हरिश्चन्द्र वर्मा जी ने एक

              फ्लो चार्ट तैयार किया जो इस प्रकार है :
              प्रथम चरण: हमें सारे B (big/गुरु) लिखने है जितने हमारे वर्ण है | यदि वर्ण तिन है तो संयोजन 3*3=9

              बनेंगे यदि 4 है तो 16 बनेंगे|
              हम 4 वर्ण लेकर चलते है संयोजन बनेंगे 16.
              4 वर्ण के लिए 4 बार B लिखना है :
              BBBB

              द्वितीय चरण:
              हमें left to right चलना है लेफ्ट में प्रथम B है तो दुसरे चरण में उसके निचे लिखे S और बाकि सारे वर्ण 

              ज्यों के त्यों लिख दें|
              SBBB
              तृतीय चरण :
              अब उपरोक्त प्रथम है S तो अगली पंक्ति में उसके निचे B लिखें जब तक B न मिल जाये | और B मिलते ही 

              S लिखें और बचे हुए वर्ण ज्यों के त्यों लिख दें|
              BSBB
              इस प्रकार उपरोक्त फ्लो चार्ट के अनुसार चलने पर हमें 16 संयोजनों की टेबल प्राप्त होगी |
              SSBB
              BBSB

              SBSB
              BSSB
              SSSB
              BBBS
              SBBS
              BSBS
              SSBS
              BBSS
              SBSS
              BSSS
              SSSS
              अंत में सारे S प्राप्त होने पर रुक जाएँ|
              उपरोक्त टेबल में B गुरु के लिए, S लघु के लिए है|
              कंप्यूटर जगत 0 1 पर कार्य नही करता अपितु सर्किट के किसी कॉम्पोनेन्ट/भाग में विधुत धारा है अथवा

              नही पर कार्य करता है | आधुनिक विज्ञान में धारा होने को 1 द्वारा तथा नही होने को 0 द्वारा प्रदर्शित किया 

              जाता है | 0 1 केवल हमारे समझने के लिए है कंप्यूटर के लिए नही| इसलिए 0 1 के स्थान पर यदि low 

              high, empty full , small big, no yes अथवा लघु और गुरु कहा जाये तो कोई फर्क पड़ने वाला नही|
              कंप्यूटर जगत के जानकर उपरोक्त वर्णन को अच्छे से समझ गये होंगे|

              इसके अतिरिक्त पिंगल ने द्विआधारीय संख्याओं को दशमलव (binary to decimal), दशमलव से 

              द्विआधारीय (decimal to binary) में परिवर्तित करने, मेरु प्रस्तार (पास्कल त्रिभुज), और द्विपद प्रमेय 

              (binomial theorem) हेतु कई सूत्र दिए जिसे केदार, हलयुध आदि ने अपने ग्रंथों में पुनः विस्तृत रूप से 

              लिखा|
              बिलकुल यही खोज हमारे western भाई साहब Gottfried Wilhelm Leibniz ने पिंगल से लगभग 1900 

              वर्ष पश्चात की |
              http://www.bsgp.org/Know_India_Culture/Great_people/The_Sage/Pingla_Rishi

              http://www.allempires.com/forum/forum_posts.asp?TID=17915
              http://en.wikipedia.org/wiki/Binary_number#History
              http://www.math.canterbury.ac.nz/~r.sainudiin/lmse/pingalas-fountain/


              अधिक जानकरी के लिए निम्न विडियो 34.40 मिनट तक काट कर आगे से देखें :
              https://www.youtube.com/watch?v=pscROPdITjA
              Posted in INDIAN INVENTIONS